direct product, metabelian, nilpotent (class 2), monomial, 3-elementary
Aliases: C2×C32.23C33, C3.6(C6×He3), C6.6(C3×He3), (C3×C6).8He3, C32⋊C9⋊16C6, (C32×C18)⋊4C3, (C32×C9)⋊30C6, (C6×He3).5C3, C33.9(C3×C6), (C3×He3).18C6, C6.5(C9○He3), (C3×C18).6C32, (C3×C6).23C33, C32.8(C2×He3), (C32×C6).8C32, C32.27(C32×C6), (C6×3- 1+2)⋊4C3, (C3×3- 1+2)⋊11C6, (C2×C32⋊C9)⋊8C3, (C3×C9).24(C3×C6), C3.5(C2×C9○He3), SmallGroup(486,199)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C32.23C33
G = < a,b,c,d,e,f | a2=b3=c3=d3=e3=1, f3=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, ede-1=bd=db, be=eb, bf=fb, fdf-1=cd=dc, ce=ec, cf=fc, ef=fe >
Subgroups: 360 in 156 conjugacy classes, 72 normal (14 characteristic)
C1, C2, C3, C3, C3, C6, C6, C6, C9, C32, C32, C32, C18, C3×C6, C3×C6, C3×C6, C3×C9, C3×C9, He3, 3- 1+2, C33, C33, C3×C18, C3×C18, C2×He3, C2×3- 1+2, C32×C6, C32×C6, C32⋊C9, C32×C9, C3×He3, C3×3- 1+2, C2×C32⋊C9, C32×C18, C6×He3, C6×3- 1+2, C32.23C33, C2×C32.23C33
Quotients: C1, C2, C3, C6, C32, C3×C6, He3, C33, C2×He3, C32×C6, C3×He3, C9○He3, C6×He3, C2×C9○He3, C32.23C33, C2×C32.23C33
(1 100)(2 101)(3 102)(4 103)(5 104)(6 105)(7 106)(8 107)(9 108)(10 84)(11 85)(12 86)(13 87)(14 88)(15 89)(16 90)(17 82)(18 83)(19 93)(20 94)(21 95)(22 96)(23 97)(24 98)(25 99)(26 91)(27 92)(28 109)(29 110)(30 111)(31 112)(32 113)(33 114)(34 115)(35 116)(36 117)(37 118)(38 119)(39 120)(40 121)(41 122)(42 123)(43 124)(44 125)(45 126)(46 127)(47 128)(48 129)(49 130)(50 131)(51 132)(52 133)(53 134)(54 135)(55 136)(56 137)(57 138)(58 139)(59 140)(60 141)(61 142)(62 143)(63 144)(64 145)(65 146)(66 147)(67 148)(68 149)(69 150)(70 151)(71 152)(72 153)(73 154)(74 155)(75 156)(76 157)(77 158)(78 159)(79 160)(80 161)(81 162)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)(37 40 43)(38 41 44)(39 42 45)(46 49 52)(47 50 53)(48 51 54)(55 58 61)(56 59 62)(57 60 63)(64 67 70)(65 68 71)(66 69 72)(73 76 79)(74 77 80)(75 78 81)(82 85 88)(83 86 89)(84 87 90)(91 94 97)(92 95 98)(93 96 99)(100 103 106)(101 104 107)(102 105 108)(109 112 115)(110 113 116)(111 114 117)(118 121 124)(119 122 125)(120 123 126)(127 130 133)(128 131 134)(129 132 135)(136 139 142)(137 140 143)(138 141 144)(145 148 151)(146 149 152)(147 150 153)(154 157 160)(155 158 161)(156 159 162)
(1 43 29)(2 44 30)(3 45 31)(4 37 32)(5 38 33)(6 39 34)(7 40 35)(8 41 36)(9 42 28)(10 158 23)(11 159 24)(12 160 25)(13 161 26)(14 162 27)(15 154 19)(16 155 20)(17 156 21)(18 157 22)(46 61 64)(47 62 65)(48 63 66)(49 55 67)(50 56 68)(51 57 69)(52 58 70)(53 59 71)(54 60 72)(73 93 89)(74 94 90)(75 95 82)(76 96 83)(77 97 84)(78 98 85)(79 99 86)(80 91 87)(81 92 88)(100 124 110)(101 125 111)(102 126 112)(103 118 113)(104 119 114)(105 120 115)(106 121 116)(107 122 117)(108 123 109)(127 142 145)(128 143 146)(129 144 147)(130 136 148)(131 137 149)(132 138 150)(133 139 151)(134 140 152)(135 141 153)
(1 85 69)(2 79 58)(3 91 53)(4 88 72)(5 73 61)(6 94 47)(7 82 66)(8 76 55)(9 97 50)(10 137 123)(11 150 100)(12 133 111)(13 140 126)(14 153 103)(15 127 114)(16 143 120)(17 147 106)(18 130 117)(19 145 119)(20 128 105)(21 144 116)(22 148 122)(23 131 108)(24 138 110)(25 151 125)(26 134 102)(27 141 113)(28 77 68)(29 98 57)(30 86 52)(31 80 71)(32 92 60)(33 89 46)(34 74 65)(35 95 63)(36 83 49)(37 81 54)(38 93 64)(39 90 62)(40 75 48)(41 96 67)(42 84 56)(43 78 51)(44 99 70)(45 87 59)(101 160 139)(104 154 142)(107 157 136)(109 158 149)(112 161 152)(115 155 146)(118 162 135)(121 156 129)(124 159 132)
(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(46 49 52)(47 50 53)(48 51 54)(55 58 61)(56 59 62)(57 60 63)(64 67 70)(65 68 71)(66 69 72)(73 79 76)(74 80 77)(75 81 78)(82 88 85)(83 89 86)(84 90 87)(91 97 94)(92 98 95)(93 99 96)(127 130 133)(128 131 134)(129 132 135)(136 139 142)(137 140 143)(138 141 144)(145 148 151)(146 149 152)(147 150 153)(154 160 157)(155 161 158)(156 162 159)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153)(154 155 156 157 158 159 160 161 162)
G:=sub<Sym(162)| (1,100)(2,101)(3,102)(4,103)(5,104)(6,105)(7,106)(8,107)(9,108)(10,84)(11,85)(12,86)(13,87)(14,88)(15,89)(16,90)(17,82)(18,83)(19,93)(20,94)(21,95)(22,96)(23,97)(24,98)(25,99)(26,91)(27,92)(28,109)(29,110)(30,111)(31,112)(32,113)(33,114)(34,115)(35,116)(36,117)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,136)(56,137)(57,138)(58,139)(59,140)(60,141)(61,142)(62,143)(63,144)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,76,79)(74,77,80)(75,78,81)(82,85,88)(83,86,89)(84,87,90)(91,94,97)(92,95,98)(93,96,99)(100,103,106)(101,104,107)(102,105,108)(109,112,115)(110,113,116)(111,114,117)(118,121,124)(119,122,125)(120,123,126)(127,130,133)(128,131,134)(129,132,135)(136,139,142)(137,140,143)(138,141,144)(145,148,151)(146,149,152)(147,150,153)(154,157,160)(155,158,161)(156,159,162), (1,43,29)(2,44,30)(3,45,31)(4,37,32)(5,38,33)(6,39,34)(7,40,35)(8,41,36)(9,42,28)(10,158,23)(11,159,24)(12,160,25)(13,161,26)(14,162,27)(15,154,19)(16,155,20)(17,156,21)(18,157,22)(46,61,64)(47,62,65)(48,63,66)(49,55,67)(50,56,68)(51,57,69)(52,58,70)(53,59,71)(54,60,72)(73,93,89)(74,94,90)(75,95,82)(76,96,83)(77,97,84)(78,98,85)(79,99,86)(80,91,87)(81,92,88)(100,124,110)(101,125,111)(102,126,112)(103,118,113)(104,119,114)(105,120,115)(106,121,116)(107,122,117)(108,123,109)(127,142,145)(128,143,146)(129,144,147)(130,136,148)(131,137,149)(132,138,150)(133,139,151)(134,140,152)(135,141,153), (1,85,69)(2,79,58)(3,91,53)(4,88,72)(5,73,61)(6,94,47)(7,82,66)(8,76,55)(9,97,50)(10,137,123)(11,150,100)(12,133,111)(13,140,126)(14,153,103)(15,127,114)(16,143,120)(17,147,106)(18,130,117)(19,145,119)(20,128,105)(21,144,116)(22,148,122)(23,131,108)(24,138,110)(25,151,125)(26,134,102)(27,141,113)(28,77,68)(29,98,57)(30,86,52)(31,80,71)(32,92,60)(33,89,46)(34,74,65)(35,95,63)(36,83,49)(37,81,54)(38,93,64)(39,90,62)(40,75,48)(41,96,67)(42,84,56)(43,78,51)(44,99,70)(45,87,59)(101,160,139)(104,154,142)(107,157,136)(109,158,149)(112,161,152)(115,155,146)(118,162,135)(121,156,129)(124,159,132), (10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,79,76)(74,80,77)(75,81,78)(82,88,85)(83,89,86)(84,90,87)(91,97,94)(92,98,95)(93,99,96)(127,130,133)(128,131,134)(129,132,135)(136,139,142)(137,140,143)(138,141,144)(145,148,151)(146,149,152)(147,150,153)(154,160,157)(155,161,158)(156,162,159), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162)>;
G:=Group( (1,100)(2,101)(3,102)(4,103)(5,104)(6,105)(7,106)(8,107)(9,108)(10,84)(11,85)(12,86)(13,87)(14,88)(15,89)(16,90)(17,82)(18,83)(19,93)(20,94)(21,95)(22,96)(23,97)(24,98)(25,99)(26,91)(27,92)(28,109)(29,110)(30,111)(31,112)(32,113)(33,114)(34,115)(35,116)(36,117)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,136)(56,137)(57,138)(58,139)(59,140)(60,141)(61,142)(62,143)(63,144)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,76,79)(74,77,80)(75,78,81)(82,85,88)(83,86,89)(84,87,90)(91,94,97)(92,95,98)(93,96,99)(100,103,106)(101,104,107)(102,105,108)(109,112,115)(110,113,116)(111,114,117)(118,121,124)(119,122,125)(120,123,126)(127,130,133)(128,131,134)(129,132,135)(136,139,142)(137,140,143)(138,141,144)(145,148,151)(146,149,152)(147,150,153)(154,157,160)(155,158,161)(156,159,162), (1,43,29)(2,44,30)(3,45,31)(4,37,32)(5,38,33)(6,39,34)(7,40,35)(8,41,36)(9,42,28)(10,158,23)(11,159,24)(12,160,25)(13,161,26)(14,162,27)(15,154,19)(16,155,20)(17,156,21)(18,157,22)(46,61,64)(47,62,65)(48,63,66)(49,55,67)(50,56,68)(51,57,69)(52,58,70)(53,59,71)(54,60,72)(73,93,89)(74,94,90)(75,95,82)(76,96,83)(77,97,84)(78,98,85)(79,99,86)(80,91,87)(81,92,88)(100,124,110)(101,125,111)(102,126,112)(103,118,113)(104,119,114)(105,120,115)(106,121,116)(107,122,117)(108,123,109)(127,142,145)(128,143,146)(129,144,147)(130,136,148)(131,137,149)(132,138,150)(133,139,151)(134,140,152)(135,141,153), (1,85,69)(2,79,58)(3,91,53)(4,88,72)(5,73,61)(6,94,47)(7,82,66)(8,76,55)(9,97,50)(10,137,123)(11,150,100)(12,133,111)(13,140,126)(14,153,103)(15,127,114)(16,143,120)(17,147,106)(18,130,117)(19,145,119)(20,128,105)(21,144,116)(22,148,122)(23,131,108)(24,138,110)(25,151,125)(26,134,102)(27,141,113)(28,77,68)(29,98,57)(30,86,52)(31,80,71)(32,92,60)(33,89,46)(34,74,65)(35,95,63)(36,83,49)(37,81,54)(38,93,64)(39,90,62)(40,75,48)(41,96,67)(42,84,56)(43,78,51)(44,99,70)(45,87,59)(101,160,139)(104,154,142)(107,157,136)(109,158,149)(112,161,152)(115,155,146)(118,162,135)(121,156,129)(124,159,132), (10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,79,76)(74,80,77)(75,81,78)(82,88,85)(83,89,86)(84,90,87)(91,97,94)(92,98,95)(93,99,96)(127,130,133)(128,131,134)(129,132,135)(136,139,142)(137,140,143)(138,141,144)(145,148,151)(146,149,152)(147,150,153)(154,160,157)(155,161,158)(156,162,159), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162) );
G=PermutationGroup([[(1,100),(2,101),(3,102),(4,103),(5,104),(6,105),(7,106),(8,107),(9,108),(10,84),(11,85),(12,86),(13,87),(14,88),(15,89),(16,90),(17,82),(18,83),(19,93),(20,94),(21,95),(22,96),(23,97),(24,98),(25,99),(26,91),(27,92),(28,109),(29,110),(30,111),(31,112),(32,113),(33,114),(34,115),(35,116),(36,117),(37,118),(38,119),(39,120),(40,121),(41,122),(42,123),(43,124),(44,125),(45,126),(46,127),(47,128),(48,129),(49,130),(50,131),(51,132),(52,133),(53,134),(54,135),(55,136),(56,137),(57,138),(58,139),(59,140),(60,141),(61,142),(62,143),(63,144),(64,145),(65,146),(66,147),(67,148),(68,149),(69,150),(70,151),(71,152),(72,153),(73,154),(74,155),(75,156),(76,157),(77,158),(78,159),(79,160),(80,161),(81,162)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36),(37,40,43),(38,41,44),(39,42,45),(46,49,52),(47,50,53),(48,51,54),(55,58,61),(56,59,62),(57,60,63),(64,67,70),(65,68,71),(66,69,72),(73,76,79),(74,77,80),(75,78,81),(82,85,88),(83,86,89),(84,87,90),(91,94,97),(92,95,98),(93,96,99),(100,103,106),(101,104,107),(102,105,108),(109,112,115),(110,113,116),(111,114,117),(118,121,124),(119,122,125),(120,123,126),(127,130,133),(128,131,134),(129,132,135),(136,139,142),(137,140,143),(138,141,144),(145,148,151),(146,149,152),(147,150,153),(154,157,160),(155,158,161),(156,159,162)], [(1,43,29),(2,44,30),(3,45,31),(4,37,32),(5,38,33),(6,39,34),(7,40,35),(8,41,36),(9,42,28),(10,158,23),(11,159,24),(12,160,25),(13,161,26),(14,162,27),(15,154,19),(16,155,20),(17,156,21),(18,157,22),(46,61,64),(47,62,65),(48,63,66),(49,55,67),(50,56,68),(51,57,69),(52,58,70),(53,59,71),(54,60,72),(73,93,89),(74,94,90),(75,95,82),(76,96,83),(77,97,84),(78,98,85),(79,99,86),(80,91,87),(81,92,88),(100,124,110),(101,125,111),(102,126,112),(103,118,113),(104,119,114),(105,120,115),(106,121,116),(107,122,117),(108,123,109),(127,142,145),(128,143,146),(129,144,147),(130,136,148),(131,137,149),(132,138,150),(133,139,151),(134,140,152),(135,141,153)], [(1,85,69),(2,79,58),(3,91,53),(4,88,72),(5,73,61),(6,94,47),(7,82,66),(8,76,55),(9,97,50),(10,137,123),(11,150,100),(12,133,111),(13,140,126),(14,153,103),(15,127,114),(16,143,120),(17,147,106),(18,130,117),(19,145,119),(20,128,105),(21,144,116),(22,148,122),(23,131,108),(24,138,110),(25,151,125),(26,134,102),(27,141,113),(28,77,68),(29,98,57),(30,86,52),(31,80,71),(32,92,60),(33,89,46),(34,74,65),(35,95,63),(36,83,49),(37,81,54),(38,93,64),(39,90,62),(40,75,48),(41,96,67),(42,84,56),(43,78,51),(44,99,70),(45,87,59),(101,160,139),(104,154,142),(107,157,136),(109,158,149),(112,161,152),(115,155,146),(118,162,135),(121,156,129),(124,159,132)], [(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(46,49,52),(47,50,53),(48,51,54),(55,58,61),(56,59,62),(57,60,63),(64,67,70),(65,68,71),(66,69,72),(73,79,76),(74,80,77),(75,81,78),(82,88,85),(83,89,86),(84,90,87),(91,97,94),(92,98,95),(93,99,96),(127,130,133),(128,131,134),(129,132,135),(136,139,142),(137,140,143),(138,141,144),(145,148,151),(146,149,152),(147,150,153),(154,160,157),(155,161,158),(156,162,159)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153),(154,155,156,157,158,159,160,161,162)]])
102 conjugacy classes
class | 1 | 2 | 3A | ··· | 3H | 3I | ··· | 3N | 3O | ··· | 3T | 6A | ··· | 6H | 6I | ··· | 6N | 6O | ··· | 6T | 9A | ··· | 9R | 9S | ··· | 9AD | 18A | ··· | 18R | 18S | ··· | 18AD |
order | 1 | 2 | 3 | ··· | 3 | 3 | ··· | 3 | 3 | ··· | 3 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | ··· | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 18 | ··· | 18 | 18 | ··· | 18 |
size | 1 | 1 | 1 | ··· | 1 | 3 | ··· | 3 | 9 | ··· | 9 | 1 | ··· | 1 | 3 | ··· | 3 | 9 | ··· | 9 | 3 | ··· | 3 | 9 | ··· | 9 | 3 | ··· | 3 | 9 | ··· | 9 |
102 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 |
type | + | + | ||||||||||||
image | C1 | C2 | C3 | C3 | C3 | C3 | C6 | C6 | C6 | C6 | He3 | C2×He3 | C9○He3 | C2×C9○He3 |
kernel | C2×C32.23C33 | C32.23C33 | C2×C32⋊C9 | C32×C18 | C6×He3 | C6×3- 1+2 | C32⋊C9 | C32×C9 | C3×He3 | C3×3- 1+2 | C3×C6 | C32 | C6 | C3 |
# reps | 1 | 1 | 18 | 2 | 2 | 4 | 18 | 2 | 2 | 4 | 6 | 6 | 18 | 18 |
Matrix representation of C2×C32.23C33 ►in GL6(𝔽19)
18 | 0 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
11 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 7 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 5 | 11 |
0 | 0 | 0 | 15 | 16 | 14 |
0 | 0 | 0 | 0 | 10 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
17 | 0 | 0 | 0 | 0 | 0 |
0 | 17 | 0 | 0 | 0 | 0 |
0 | 0 | 17 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 13 | 0 |
0 | 0 | 0 | 0 | 15 | 1 |
0 | 0 | 0 | 1 | 3 | 0 |
G:=sub<GL(6,GF(19))| [18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7],[0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,18,15,0,0,0,0,5,16,10,0,0,0,11,14,4],[1,0,0,0,0,0,0,11,0,0,0,0,0,0,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[17,0,0,0,0,0,0,17,0,0,0,0,0,0,17,0,0,0,0,0,0,4,0,1,0,0,0,13,15,3,0,0,0,0,1,0] >;
C2×C32.23C33 in GAP, Magma, Sage, TeX
C_2\times C_3^2._{23}C_3^3
% in TeX
G:=Group("C2xC3^2.23C3^3");
// GroupNames label
G:=SmallGroup(486,199);
// by ID
G=gap.SmallGroup(486,199);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,548,2169,93]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=d^3=e^3=1,f^3=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,e*d*e^-1=b*d=d*b,b*e=e*b,b*f=f*b,f*d*f^-1=c*d=d*c,c*e=e*c,c*f=f*c,e*f=f*e>;
// generators/relations